49 research outputs found

    Participation and Data Valuation in IoT Data Markets through Distributed Coalitions

    Get PDF
    This paper considers a market for trading Internet of Things (IoT) data that is used to train machine learning models. The data, either raw or processed, is supplied to the market platform through a network and the price of such data is controlled based on the value it brings to the machine learning model. We explore the correlation property of data in a game-theoretical setting to eventually derive a simplified distributed solution for a data trading mechanism that emphasizes the mutual benefit of devices and the market. The key proposal is an efficient algorithm for markets that jointly addresses the challenges of availability and heterogeneity in participation, as well as the transfer of trust and the economic value of data exchange in IoT networks. The proposed approach establishes the data market by reinforcing collaboration opportunities between device with correlated data to avoid information leakage. Therein, we develop a network-wide optimization problem that maximizes the social value of coalition among the IoT devices of similar data types; at the same time, it minimizes the cost due to network externalities, i.e., the impact of information leakage due to data correlation, as well as the opportunity costs. Finally, we reveal the structure of the formulated problem as a distributed coalition game and solve it following the simplified split-and-merge algorithm. Simulation results show the efficacy of our proposed mechanism design toward a trusted IoT data market, with up to 32.72% gain in the average payoff for each seller.Comment: 14 pages. Submitted for possible publicatio

    Goal-Oriented Communications in Federated Learning via Feedback on Risk-Averse Participation

    Full text link
    We treat the problem of client selection in a Federated Learning (FL) setup, where the learning objective and the local incentives of the participants are used to formulate a goal-oriented communication problem. Specifically, we incorporate the risk-averse nature of participants and obtain a communication-efficient on-device performance, while relying on feedback from the Parameter Server (\texttt{PS}). A client has to decide its transmission plan on when not to participate in FL. This is based on its intrinsic incentive, which is the value of the trained global model upon participation by this client. Poor updates not only plunge the performance of the global model with added communication cost but also propagate the loss in performance on other participating devices. We cast the relevance of local updates as \emph{semantic information} for developing local transmission strategies, i.e., making a decision on when to ``not transmit". The devices use feedback about the state of the PS and evaluate their contributions in training the learning model in each aggregation period, which eventually lowers the number of occupied connections. Simulation results validate the efficacy of our proposed approach, with up to 1.4×1.4\times gain in communication links utilization as compared with the baselines

    Scheduling Policy for Value-of-Information (VoI) in Trajectory Estimation for Digital Twins

    Full text link
    This paper presents an approach to schedule observations from different sensors in an environment to ensure their timely delivery and build a digital twin (DT) model of the system dynamics. At the cloud platform, DT models estimate and predict the system's state, then compute the optimal scheduling policy and resource allocation strategy to be executed in the physical world. However, given limited network resources, partial state vector information, and measurement errors at the distributed sensing agents, the acquisition of data (i.e., observations) for efficient state estimation of system dynamics is a non-trivial problem. We propose a Value of Information (VoI)-based algorithm that provides a polynomial-time solution for selecting the most informative subset of sensing agents to improve confidence in the state estimation of DT models. Numerical results confirm that the proposed method outperforms other benchmarks, reducing the communication overhead by half while maintaining the required estimation accuracy

    Ruin Theory for Dynamic Spectrum Allocation in LTE-U Networks

    Full text link
    LTE in the unlicensed band (LTE-U) is a promising solution to overcome the scarcity of the wireless spectrum. However, to reap the benefits of LTE-U, it is essential to maintain its effective coexistence with WiFi systems. Such a coexistence, hence, constitutes a major challenge for LTE-U deployment. In this paper, the problem of unlicensed spectrum sharing among WiFi and LTE-U system is studied. In particular, a fair time sharing model based on \emph{ruin theory} is proposed to share redundant spectral resources from the unlicensed band with LTE-U without jeopardizing the performance of the WiFi system. Fairness among both WiFi and LTE-U is maintained by applying the concept of the probability of ruin. In particular, the probability of ruin is used to perform efficient duty-cycle allocation in LTE-U, so as to provide fairness to the WiFi system and maintain certain WiFi performance. Simulation results show that the proposed ruin-based algorithm provides better fairness to the WiFi system as compared to equal duty-cycle sharing among WiFi and LTE-U.Comment: Accepted in IEEE Communications Letters (09-Dec 2018

    Provenance-enabled Packet Path Tracing in the RPL-based Internet of Things

    Full text link
    The interconnection of resource-constrained and globally accessible things with untrusted and unreliable Internet make them vulnerable to attacks including data forging, false data injection, and packet drop that affects applications with critical decision-making processes. For data trustworthiness, reliance on provenance is considered to be an effective mechanism that tracks both data acquisition and data transmission. However, provenance management for sensor networks introduces several challenges, such as low energy, bandwidth consumption, and efficient storage. This paper attempts to identify packet drop (either maliciously or due to network disruptions) and detect faulty or misbehaving nodes in the Routing Protocol for Low-Power and Lossy Networks (RPL) by following a bi-fold provenance-enabled packed path tracing (PPPT) approach. Firstly, a system-level ordered-provenance information encapsulates the data generating nodes and the forwarding nodes in the data packet. Secondly, to closely monitor the dropped packets, a node-level provenance in the form of the packet sequence number is enclosed as a routing entry in the routing table of each participating node. Lossless in nature, both approaches conserve the provenance size satisfying processing and storage requirements of IoT devices. Finally, we evaluate the efficacy of the proposed scheme with respect to provenance size, provenance generation time, and energy consumption.Comment: 14 pages, 18 Figure
    corecore